A systems engineer (SE) is working with a customer that is fully cloud-deployed for all applications. The customer is interested in Palo Alto Networks NGFWs but describes the following challenges:
"Our apps are in AWS and Azure, with whom we have contracts and minimum-revenue guarantees. We would use the built-in firewall on the cloud service providers (CSPs), but the need for centralized policy management to reduce human error is more important."
Which recommendations should the SE make?
Cloud NGFWs at both CSPs; provide the customer a license for a Panorama virtual appliance from their CSP's marketplace of choice to centrally manage the systems.
Cloud NGFWs in AWS and VM-Series firewall in Azure; the customer selects a PAYG licensing Panorama deployment in their CSP of choice.
VM-Series firewalls in both CSPs; manually built Panorama in the CSP of choice on a host of either type: Palo Alto Networks provides a license.
VM-Series firewall and CN-Series firewall in both CSPs; provide the customer a private-offer Panorama virtual appliance from their CSP’s marketplace of choice to centrally manage the systems.
The customer is seeking centralized policy management to reduce human error while maintaining compliance with their contractual obligations to AWS and Azure. Here's the evaluation of each option:
Option A: Cloud NGFWs at both CSPs; provide the customer a license for a Panorama virtual appliance from their CSP's marketplace of choice to centrally manage the systems
Cloud NGFW is a fully managed Next-Generation Firewall service by Palo Alto Networks, offered in AWS and Azure marketplaces. It integrates natively with the CSP infrastructure, making it a good fit for customers with existing CSP agreements.
Panorama, Palo Alto Networks' centralized management solution, can be deployed as a virtual appliance in the CSP marketplace of choice, enabling centralized policy management across all NGFWs.
This option addresses the customer's need for centralized management while leveraging their existing contracts with AWS and Azure.
This option is appropriate.
Option B: Cloud NGFWs in AWS and VM-Series firewall in Azure; the customer selects a PAYG licensing Panorama deployment in their CSP of choice
This option suggests using Cloud NGFW in AWS but VM-Series firewalls in Azure. While VM-Series is a flexible virtual firewall solution, it may not align with the customer’s stated preference for CSP-managed services like Cloud NGFW.
This option introduces a mix of solutions that could complicate centralized management and reduce operational efficiency.
This option is less appropriate.
Option C: VM-Series firewalls in both CSPs; manually built Panorama in the CSP of choice on a host of either type: Palo Alto Networks provides a license
VM-Series firewalls are well-suited for cloud deployments but require more manual configuration compared to Cloud NGFW.
Building a Panorama instance manually on a host increases operational overhead and does not leverage the customer’s existing CSP marketplaces.
This option is less aligned with the customer's needs.
Option D: VM-Series firewall and CN-Series firewall in both CSPs; provide the customer a private-offer Panorama virtual appliance from their CSP’s marketplace of choice to centrally manage the systems
This option introduces both VM-Series and CN-Series firewalls in both CSPs. While CN-Series firewalls are designed for Kubernetes environments, they may not be relevant if the customer does not specifically require container-level security.
Adding CN-Series firewalls may introduce unnecessary complexity and costs.
This option is not appropriate.
References:
Palo Alto Networks documentation on Cloud NGFW
Panorama overview in Palo Alto Knowledge Base
VM-Series firewalls deployment guide in CSPs: Palo Alto Documentation
Device-ID can be used in which three policies? (Choose three.)
Security
Decryption
Policy-based forwarding (PBF)
SD-WAN
Quality of Service (QoS)
The question asks about the policies where Device-ID, a feature of Palo Alto Networks NGFWs, can be applied. Device-ID enables the firewall to identify and classify devices (e.g., IoT, endpoints) based on attributes like device type, OS, or behavior, enhancing policy enforcement. Let’s evaluate its use across the specified policy types.
Step 1: Understand Device-ID
Device-ID leverages the IoT Security subscription and integrates with the Strata Firewall to provide device visibility and control. It uses data from sources like DHCP, HTTP headers, and machinelearning to identify devices and allows policies to reference device objects (e.g., “IP Camera,” “Medical Device”). This feature is available on PA-Series firewalls running PAN-OS 10.0 or later with the appropriate license.
Which two products can be integrated and managed by Strata Cloud Manager (SCM)? (Choose two)
Prisma SD-WAN
Prisma Cloud
Cortex XDR
VM-Series NGFW
Strata Cloud Manager (SCM) is Palo Alto Networks’ centralized cloud-based management platform for managing network security solutions, including Prisma Access and Prisma SD-WAN. SCM can also integrate with VM-Series firewalls for managing virtualized NGFW deployments.
Why A (Prisma SD-WAN) Is Correct
SCM is the management interface for Prisma SD-WAN, enabling centralized orchestration, monitoring, and configuration of SD-WAN deployments.
Why D (VM-Series NGFW) Is Correct
SCM supports managing VM-Series NGFWs, providing centralized visibility and control for virtualized firewall deployments in cloud or on-premises environments.
Why Other Options Are Incorrect
B (Prisma Cloud):Prisma Cloud is a separate product for securing workloads in public cloud environments. It is not managed via SCM.
C (Cortex XDR):Cortex XDR is a platform for endpoint detection and response (EDR). It is managed through its own console, not SCM.
References:
Palo Alto Networks Strata Cloud Manager Overview
Which two statements correctly describe best practices for sizing a firewall deployment with decryption enabled? (Choose two.)
SSL decryption traffic amounts vary from network to network.
Large average transaction sizes consume more processing power to decrypt.
Perfect Forward Secrecy (PFS) ephemeral key exchange algorithms such as Diffie-Hellman Ephemeral (DHE) and Elliptic-Curve Diffie-Hellman Exchange (ECDHE) consume more processing resources than Rivest-Shamir-Adleman (RSA) algorithms.
Rivest-Shamir-Adleman (RSA) certificate authentication method (not the RSA key exchange algorithm) consumes more resources than Elliptic Curve Digital Signature Algorithm (ECDSA), but ECDSA is more secure.
When planning a firewall deployment with SSL/TLS decryption enabled, it is crucial to consider the additional processing overhead introduced by decrypting and inspecting encrypted traffic. Here are the details for each statement:
Why "SSL decryption traffic amounts vary from network to network" (Correct Answer A)?SSL decryption traffic varies depending on the organization’s specific network environment, user behavior, and applications. For example, networks with heavy web traffic, cloud applications, or encrypted VoIP traffic will have more SSL/TLS decryption processing requirements. This variability means each deployment must be properly assessed and sized accordingly.
Why "Perfect Forward Secrecy (PFS) ephemeral key exchange algorithms such as Diffie-Hellman Ephemeral (DHE) and Elliptic-Curve Diffie-Hellman Exchange (ECDHE) consume more processing resources than Rivest-Shamir-Adleman (RSA) algorithms" (Correct Answer C)?PFS algorithms like DHE and ECDHE generate unique session keys for each connection, ensuring better security but requiring significantly more processing power compared to RSA key exchange. When decryption is enabled, firewalls must handle these computationally expensive operations for every encrypted session, impacting performance and sizing requirements.
Why not "Large average transaction sizes consume more processing power to decrypt" (Option B)?While large transaction sizes can consume additional resources, SSL/TLS decryption is more dependent on the number of sessions and the complexity of the encryption algorithms used, rather than the size of the transactions. Hence, this is not a primary best practice consideration.
Why not "Rivest-Shamir-Adleman (RSA) certificate authentication method consumes more resources than Elliptic Curve Digital Signature Algorithm (ECDSA), but ECDSA is more secure" (Option D)?This statement discusses certificate authentication methods, not SSL/TLS decryption performance. While ECDSA is more efficient and secure than RSA, it is not directly relevant to sizing considerations for firewall deployments with decryption enabled.
A prospective customer wants to validate an NGFW solution and seeks the advice of a systems engineer (SE) regarding a design to meet the following stated requirements:
"We need an NGFW that can handle 72 Gbps inside of our core network. Our core switches only have up to 40 Gbps links available to which new devices can connect. We cannot change the IP address structure of the environment, and we need protection for threat prevention, DNS, and perhaps sandboxing."
Which hardware and architecture/design recommendations should the SE make?
PA-5445 or larger to cover the bandwidth need and the link types; Architect aggregate interface groups in Layer-2 or virtual wire mode that include 2 x 40Gbps interfaces on both sides of the path.
PA-5430 or larger to cover the bandwidth need and the link types; Architect aggregate interface groups in Layer-3 mode that include 40Gbps interfaces on both sides of the path.
PA-5445 or larger to cover the bandwidth need and the link types; Architect aggregate interface groups in Layer-3 mode that include 40Gbps interfaces on both sides of the path.
PA-5430 or larger to cover the bandwidth need and the link types; Architect aggregate interface groups in Layer-2 or virtual wire mode that include 2 x 40Gbps interfaces on both sides of the path.
The problem provides several constraints and design requirements that must be carefully considered:
Bandwidth Requirement:
The customer needs an NGFW capable of handling a total throughput of 72 Gbps.
The PA-5445 is specifically designed for high-throughput environments and supports up to81.3 Gbps Threat Prevention throughput(as per the latest hardware performance specifications). This ensures the throughput needs are fully met with some room for growth.
Interface Compatibility:
The customer mentions that their core switches support up to40 Gbps interfaces. The design must include aggregate links to meet the overall bandwidth while aligning with the 40 Gbps interface limitations.
The PA-5445 supports40Gbps QSFP+ interfaces, making it a suitable option for the hardware requirement.
No Change to IP Address Structure:
Since the customer cannot modify their IP address structure, deploying the NGFW inLayer-2 or Virtual Wire modeis ideal.
Virtual Wire modeallows the firewall to inspect traffic transparently between two Layer-2 devices without modifying the existing IP structure. Similarly, Layer-2 mode allows the firewall to behave like a switch at Layer-2 while still applying security policies.
Threat Prevention, DNS, and Sandboxing Requirements:
The customer requires advanced security features likeThreat Preventionand potentiallysandboxing(WildFire). The PA-5445 is equipped to handle these functionalities with its dedicated hardware-based architecture for content inspection and processing.
Aggregate Interface Groups:
The architecture should includeaggregate interface groupsto distribute traffic across multiple physical interfaces to support the high throughput requirement.
By aggregating2 x 40Gbps interfaces on both sides of the pathin Virtual Wire or Layer-2 mode, the design ensures sufficient bandwidth (up to 80 Gbps per side).
Why PA-5445 in Layer-2 or Virtual Wire mode is the Best Option:
Option Asatisfies all the customer’s requirements:
The PA-5445 meets the 72 Gbps throughput requirement.
2 x 40 Gbps interfaces can be aggregated to handle traffic flow between the core switches and the NGFW.
Virtual Wire or Layer-2 mode preserves the IP address structure, while still allowing full threat prevention and DNS inspection capabilities.
The PA-5445 also supports sandboxing (WildFire) for advanced file-based threat detection.
Why Not Other Options:
Option B:
The PA-5430 is insufficient for the throughput requirement (72 Gbps). Itsmaximum Threat Prevention throughput is 60.3 Gbps, which does not provide the necessary capacity.
Option C:
While the PA-5445 is appropriate, deploying it inLayer-3 modewould require changes to the IP address structure, which the customer explicitly stated is not an option.
Option D:
The PA-5430 does not meet the throughput requirement. Although Layer-2 or Virtual Wire mode preserves the IP structure, the throughput capacity of the PA-5430 is a limiting factor.
References from Palo Alto Networks Documentation:
Palo Alto Networks PA-5400 Series Datasheet (latest version)
Specifies the performance capabilities of the PA-5445 and PA-5430 models.
Palo Alto Networks Virtual Wire Deployment Guide
Explains how Virtual Wire mode can be used to transparently inspect traffic without changing the existing IP structure.
Aggregated Ethernet Interface Documentation
Details the configuration and use of aggregate interface groups for high throughput.
What does Policy Optimizer allow a systems engineer to do for an NGFW?
Recommend best practices on new policy creation
Show unused licenses for Cloud-Delivered Security Services (CDSS) subscriptions and firewalls
Identify Security policy rules with unused applications
Act as a migration tool to import policies from third-party vendors
Policy Optimizer is a feature designed to help administrators improve the efficiency and effectiveness of security policies on Palo Alto Networks Next-Generation Firewalls (NGFWs). It focuses on identifying unused or overly permissive policies to streamline and optimize the configuration.
Why "Identify Security policy rules with unused applications" (Correct Answer C)?Policy Optimizer provides visibility into existing security policies and identifies rules thathave unused or outdated applications. For example:
It can detect if a rule allows applications that are no longer in use.
It can identify rules with excessive permissions, enabling administrators to refine them for better security and performance.By addressing these issues, Policy Optimizer helps reduce the attack surface and improves the overall manageability of the firewall.
Why not "Recommend best practices on new policy creation" (Option A)?Policy Optimizer focuses on optimizingexisting policies, not creating new ones. While best practices can be applied during policy refinement, recommending new policy creation is not its purpose.
Why not "Show unused licenses for Cloud-Delivered Security Services (CDSS) subscriptions and firewalls" (Option B)?Policy Optimizer is not related to license management or tracking. Identifying unused licenses is outside the scope of its functionality.
Why not "Act as a migration tool to import policies from third-party vendors" (Option D)?Policy Optimizer does not function as a migration tool. While Palo Alto Networks offers tools for third-party firewall migration, this is separate from the Policy Optimizer feature.
Which use case is valid for Palo Alto Networks Next-Generation Firewalls (NGFWs)?
Code-embedded NGFWs provide enhanced internet of things (IoT) security by allowing PAN-OS code to be run on devices that do not support embedded virtual machine (VM) images.
Serverless NGFW code security provides public cloud security for code-only deployments that do not leverage virtual machine (VM) instances or containerized services.
IT/OT segmentation firewalls allow operational technology resources in plant networks to securely interface with IT resources in the corporate network.
PAN-OS GlobalProtect gateways allow companies to run malware and exploit prevention modules on their endpoints without installing endpoint agents.
Palo Alto Networks Next-Generation Firewalls (NGFWs) provide robust security features across a variety of use cases. Let’s analyze each option:
A. Code-embedded NGFWs provide enhanced IoT security by allowing PAN-OS code to be run on devices that do not support embedded VM images.
This statement is incorrect. NGFWs do not operate as "code-embedded" solutions for IoT devices. Instead, they protect IoT devices through advanced threat prevention, device identification, and segmentation capabilities.
B. Serverless NGFW code security provides public cloud security for code-only deployments that do not leverage VM instances or containerized services.
This is not a valid use case. Palo Alto NGFWs provide security for public cloud environments using VM-series firewalls, CN-series (containerized firewalls), and Prisma Cloud for securing serverless architectures. NGFWs do not operate in "code-only" environments.
C. IT/OT segmentation firewalls allow operational technology (OT) resources in plant networks to securely interface with IT resources in the corporate network.
This is a valid use case. Palo Alto NGFWs are widely used in industrial environments to provide IT/OT segmentation, ensuring that operational technology systems in plants or manufacturing facilities can securely communicate with IT networks while protecting against cross-segment threats. Features like App-ID, User-ID, and Threat Prevention are leveraged for this segmentation.
D. PAN-OS GlobalProtect gateways allow companies to run malware and exploit prevention modules on their endpoints without installing endpoint agents.
This is incorrect. GlobalProtect gateways provide secure remote access to corporate networks and extend the NGFW’s threat prevention capabilities to endpoints, but endpoint agents are required to enforce malware and exploit prevention modules.
Key Takeaways:
IT/OT segmentation with NGFWs is a real and critical use case in industries like manufacturing and utilities.
The other options describe features or scenarios that are not applicable or valid for NGFWs.
References:
Palo Alto Networks NGFW Use Cases
Industrial Security with NGFWs
The efforts of a systems engineer (SE) with an industrial mining company account have yielded interest in Palo Alto Networks as part of its effort to incorporate innovative design into operations using robots and remote-controlled vehicles in dangerous situations. A discovery call confirms that the company will receive control signals to its machines over a private mobile network using radio towers that connect to cloud-based applications that run the control programs.
Which two sets of solutions should the SE recommend?
That 5G Security be enabled and architected to ensure the cloud computing is not compromised in the commands it is sending to the onsite machines.
That Cloud NGFW be included to protect the cloud-based applications from external access into the cloud service provider hosting them.
That IoT Security be included for visibility into the machines and to ensure that other devices connected to the network are identified and given risk and behavior profiles.
That an Advanced CDSS bundle (Advanced Threat Prevention, Advanced WildFire, and Advanced URL Filtering) be procured to ensure the design receives advanced protection.
5G Security (Answer A):
In this scenario, the mining company operates on a private mobile network, likely powered by5G technologyto ensure low latency and high bandwidth for controlling robots and vehicles.
Palo Alto Networks5G Securityis specifically designed to protect private mobile networks. It prevents exploitation of vulnerabilities in the 5G infrastructure and ensures the control signals sent to the machines arenot compromisedby attackers.
Key features include network slicing protection, signaling plane security, and secure user plane communications.
IoT Security (Answer C):
The mining operation depends on machines and remote-controlled vehicles, which are IoT devices.
Palo Alto NetworksIoT Securityprovides:
Full device visibilityto detect all IoT devices (such as robots, remote vehicles, or sensors).
Behavioral analysisto create risk profiles and identify anomalies in themachines' operations.
This ensures a secure environment for IoT devices, reducing the risk of a device being exploited.
Why Not Cloud NGFW (Answer B):
WhileCloud NGFWis critical for protecting cloud-based applications, the specific concern here isprotecting control signals and IoT devicesrather than external access into the cloud service.
The private mobile network and IoT device protection requirements make5G SecurityandIoT Securitymore relevant.
Why Not Advanced CDSS Bundle (Answer D):
The Advanced CDSS bundle (Advanced Threat Prevention, Advanced WildFire, Advanced URL Filtering) is essential for securing web traffic and detecting threats, but it does not address thespecific challenges of securing private mobile networksandIoT devices.
While these services can supplement the design, they are not theprimary focusin this use case.
References from Palo Alto Networks Documentation:
5G Security for Private Mobile Networks
IoT Security Solution Brief
Cloud NGFW Overview
Which two compliance frameworks are included with the Premium version of Strata Cloud Manager (SCM)? (Choose two)
Payment Card Industry (PCI)
National Institute of Standards and Technology (NIST)
Center for Internet Security (CIS)
Health Insurance Portability and Accountability Act (HIPAA)
Step 1: Understanding Strata Cloud Manager (SCM) Premium
Strata Cloud Manager is a unified management interface for Strata NGFWs, Prisma Access, and other Palo Alto Networks solutions. ThePremium version(subscription-based) includes advanced features like:
AIOps Premium: Predictive analytics, capacity planning, and compliance reporting.
Compliance Posture Management: Pre-built dashboards and reports for specific regulatory frameworks.
Compliance frameworks in SCM Premium provide visibility into adherence to standards like PCI DSS and NIST, generating actionable insights and audit-ready reports based on firewall configurations, logs, and traffic data.
As a team plans for a meeting with a new customer in one week, the account manager prepares to pitch Zero Trust. The notes provided to the systems engineer (SE) in preparationfor the meeting read: "Customer is struggling with security as they move to cloud apps and remote users." What should the SE recommend to the team in preparation for the meeting?
Lead with the account manager pitching Zero Trust with the aim of convincing the customer that the team's approach meets their needs.
Design discovery questions to validate customer challenges with identity, devices, data, and access for applications and remote users.
Lead with a product demonstration of GlobalProtect connecting to an NGFW and Prisma Access, and have SaaS security enabled.
Guide the account manager into recommending Prisma SASE at the customer meeting to solve the issues raised.
When preparing for a customer meeting, it’s important to understand their specific challenges and align solutions accordingly. The notes suggest that the customer is facing difficulties securing their cloud apps and remote users, which are core areas addressed by Palo Alto Networks’ Zero Trust and SASE solutions. However, jumping directly into a pitch or product demonstration without validating the customer's specific challenges may fail to build trust or fully address their needs.
Option A:Leading with a pre-structured pitch about Zero Trust principles may not resonate with the customer if their challenges are not fully understood first. The team needs to gather insights into the customer's security pain points before presenting a solution.
Option B (Correct):Discovery questionsare a critical step in the sales process, especially when addressing complex topics like Zero Trust. By designing targeted questions about the customer’s challenges with identity, devices, data, and access, the SE can identify specific pain points. These insights can then be used to tailor a Zero Trust strategy that directly addresses the customer’s concerns. This approach ensures the meeting is customer-focused and demonstrates that the SE understands their unique needs.
Option C:While a product demonstration of GlobalProtect, Prisma Access, and SaaS security is valuable, it should come after discovery. Presenting products prematurely may seem like a generic sales pitch and could fail to address the customer’s actual challenges.
Option D:Prisma SASEis an excellent solution for addressing cloud security and remote user challenges, but recommending it without first understanding the customer’s specific needs may undermine trust. This step should follow after discovery and validation of the customer’s pain points.
Examples of Discovery Questions:
What are your primary security challenges with remote users and cloud applications?
Are you currently able to enforce consistent security policies across your hybrid environment?
How do you handle identity verification and access control for remote users?
What level of visibility do you have into traffic to and from your cloud applications?
References:
Palo Alto Networks Zero Trust Overview: https://www.paloaltonetworks.com/zero-trust
Best Practices for Customer Discovery: https://docs.paloaltonetworks.com/sales-playbooks
A company has multiple business units, each of which manages its own user directories and identity providers (IdPs) with different domain names. The company’s network security team wants to deploy a shared GlobalProtect remote access service for all business units to authenticate users to each business unit's IdP.
Which configuration will enable the network security team to authenticate GlobalProtect users to multiple SAML IdPs?
GlobalProtect with multiple authentication profiles for each SAML IdP
Multiple authentication mode Cloud Identity Engine authentication profile for use on the GlobalProtect portals and gateways
Authentication sequence that has multiple authentication profiles using different authentication methods
Multiple Cloud Identity Engine tenants for each business unit
To configure GlobalProtect to authenticate users from multiple SAML identity providers (IdPs), the correct approach involves creating multiple authentication profiles, one for each IdP. Here's the analysis of each option:
Option A: GlobalProtect with multiple authentication profiles for each SAML IdP
GlobalProtect allows configuring multiple SAML authentication profiles, each corresponding to a specific IdP.
These profiles are associated with the GlobalProtect portal or gateway. When users attempt to authenticate, they can be directed to the appropriate IdP based on their domain or other attributes.
This is the correct approach to enable authentication for users from multiple IdPs.
Option B: Multiple authentication mode Cloud Identity Engine authentication profile for use on the GlobalProtect portals and gateways
The Cloud Identity Engine (CIE) can synchronize identities from multiple directories, but it does not directly support multiple SAML IdPs for a shared GlobalProtect setup.
This option is not applicable.
Option C: Authentication sequence that has multiple authentication profiles using different authentication methods
Authentication sequences allow multiple authentication methods (e.g., LDAP, RADIUS, SAML) to be tried in sequence for the same user, but they are not designed for handling multiple SAML IdPs.
This option is not appropriate for the scenario.
Option D: Multiple Cloud Identity Engine tenants for each business unit
Deploying multiple CIE tenants for each business unit adds unnecessary complexity and is not required for configuring GlobalProtect to authenticate users to multiple SAML IdPs.
This option is not appropriate.
An existing customer wants to expand their online business into physical stores for the first time. The customer requires NGFWs at the physical store to handle SD-WAN, security, and data protection needs, while also mandating a vendor-validated deployment method. Which two steps are valid actions for a systems engineer to take? (Choose two.)
Recommend the customer purchase Palo Alto Networks or partner-provided professional services to meet the stated requirements.
Use Golden Images and Day 1 configuration to create a consistent baseline from which the customer can efficiently work.
Create a bespoke deployment plan with the customer that reviews their cloud architecture, store footprint, and security requirements.
Use the reference architecture "On-Premises Network Security for the Branch Deployment Guide" to achieve a desired architecture.
When an existing customer expands their online business into physical stores and requires Next-Generation Firewalls (NGFWs) at those locations to handle SD-WAN, security, and data protection—while mandating a vendor-validated deployment method—a systems engineer must leverage Palo Alto Networks’ Strata Hardware Firewall capabilities and validated deployment strategies. The Strata portfolio, particularly the PA-Series NGFWs, is designed to secure branch offices with integrated SD-WAN and robust security features. Below is a detailed explanation of why options A and D are the correct actions, grounded in Palo Alto Networks’ documentation and practices as of March 08, 2025.
Step 1: Recommend Professional Services (Option A)
The customer’s requirement for a "vendor-validated deployment method" implies a need for expertise and assurance that the solution meets their specific needs—SD-WAN, security, and data protection—across new physical stores. Palo Alto Networks offers professional services, either directly or through certified partners, to ensure proper deployment of Strata Hardware Firewalls like the PA-400 Series or PA-1400 Series, which are ideal for branch deployments. These services provide end-to-end support, from planning to implementation, aligning with the customer’s mandate for a validated approach.
Professional Services Scope:Palo Alto Networks’ professional services include architecture design, deployment, and optimization for NGFWs and SD-WAN. This ensures that the PA-Series firewalls are configured to handle SD-WAN (e.g., dynamic path selection), security (e.g., Threat Prevention with ML-powered inspection), and data protection (e.g., WildFire for malware analysis and Data Loss Prevention integration).
Vendor Validation:By recommending these services, the engineer ensures a deployment that adheres to Palo Alto Networks’ best practices, meeting the customer’s requirement for a vendor-validated method. This is particularly critical for a customer new to physical store deployments, as it mitigates risks and accelerates time-to-value.
Strata Hardware Relevance:The PA-410, for example, is a desktop NGFW designed for small branch offices, offering SD-WAN and Zero Trust security out of the box. Professional services ensure its correct integration into the customer’s ecosystem.
A company with a large Active Directory (AD) of over 20,000 groups has user roles based on group membership in the directory. Up to 1,000 groups may be used in Security policies. The company has limited operations personnel and wants to reduce the administrative overhead of managing the synchronization of the groups with their firewalls.
What is the recommended architecture to synchronize the company's AD with Palo Alto Networks firewalls?
Configure a group mapping profile with custom filters for LDAP attributes that are mapped to the user roles.
Configure a group mapping profile, without a filter, to synchronize all groups.
Configure a group mapping profile with an include group list.
Configure NGFWs to synchronize with the AD after deploying the Cloud Identity Engine (CIE) and agents.
Synchronizing a large Active Directory (AD) with over 20,000 groups can introduce significant overhead if all groups are synchronized, especially when only a subset of groups (e.g., 1,000 groups) are required for Security policies. The most efficient approach is to configure agroup mapping profile with an include group listto minimize unnecessary synchronization and reduce administrative overhead.
Why "Configure a group mapping profile with an include group list" (Correct AnswerC)?Using a group mapping profile with aninclude group listensures that only the required 1,000 groups are synchronized with the firewall. This approach:
Reduces the load on the firewall's User-ID process by limiting the number of synchronized groups.
Simplifies management by focusing on the specific groups relevant to Security policies.
Avoids synchronizing the entire directory (20,000 groups), which would be inefficient and resource-intensive.
Why not "Configure a group mapping profile, without a filter, to synchronize all groups" (Option B)?Synchronizing all 20,000 groups would unnecessarily increase administrative and resource overhead. This approach contradicts the requirement to reduce administrative burden.
Why not "Configure a group mapping profile with custom filters for LDAP attributes that are mapped to the user roles" (Option A)?While filtering LDAP attributes can be useful, this approach is more complex to implement and manage compared to an include group list. It does not directly address the problem of limiting synchronization to a specific subset of groups.
Why not "Configure NGFWs to synchronize with the AD after deploying the Cloud Identity Engine (CIE) and agents" (Option D)?While the Cloud Identity Engine (CIE) is a modern solution for user and group mapping, it is unnecessary in this scenario. A traditional group mapping profile with an include list is sufficient and simpler to implement. CIE is typically used for complex hybrid or cloud environments.
A prospective customer is concerned about stopping data exfiltration, data infiltration, and command-and-control (C2) activities over port 53.
Which subscription(s) should the systems engineer recommend?
Threat Prevention
App-ID and Data Loss Prevention
DNS Security
Advanced Threat Prevention and Advanced URL Filtering
DNS Security (Answer C):
DNS Securityis the appropriate subscription for addressingthreats over port 53.
DNS tunneling is a common method used fordata exfiltration, infiltration, and C2 activities, as it allows malicious traffic to be hidden within legitimate DNS queries.
The DNS Security service appliesmachine learning modelsto analyze DNS queries in real-time, block malicious domains, and prevent tunneling activities.
It integrates seamlessly with the NGFW, ensuring advanced protection against DNS-based threats without requiring additional infrastructure.
Why Not Threat Prevention (Answer A):
Threat Prevention is critical for blocking malware, exploits, and vulnerabilities, but it does not specifically addressDNS-based tunnelingor C2 activities over port 53.
Why Not App-ID and Data Loss Prevention (Answer B):
While App-ID can identify applications, and Data Loss Prevention (DLP) helps prevent sensitive data leakage, neither focuses on blockingDNS tunnelingor malicious activity over port 53.
Why Not Advanced Threat Prevention and Advanced URL Filtering (Answer D):
Advanced Threat Prevention and URL Filtering are excellent for broader web and network threats, but DNS tunneling specifically requires theDNS Security subscription, which specializes in DNS-layer threats.
References from Palo Alto Networks Documentation:
DNS Security Subscription Overview
Which two methods are valid ways to populate user-to-IP mappings? (Choose two.)
XML API
Captive portal
User-ID
SCP log ingestion
Step 1: Understanding User-to-IP Mappings
User-to-IP mappings are the foundation of User-ID, a core feature of Strata Hardware Firewalls (e.g., PA-400 Series, PA-5400 Series). These mappings link a user’s identity (e.g., username) to their device’s IP address, enabling policy enforcement based on user identity rather than just IP. Palo Alto Networks supports multiple methods to populate these mappings, depending on thenetwork environment and authentication mechanisms.
Purpose:Allows the firewall to apply user-based policies, monitor user activity, and generate user-specific logs.
Strata Context:On a PA-5445, User-ID integrates with App-ID and security subscriptions to enforce granular access control.