You are working on a Data Science project and during the project you have been gibe a responsibility to interview all the stakeholders in the project. In which phase of the project you are?
You are using one approach for the classification where to teach the agent not by giving explicit categorizations, but by using some sort of reward system to indicate success, where agents might be rewarded for doing certain actions and punished for doing others. Which kind of this learning
What are the advantages of the mutual information over the Pearson correlation for text classification problems?
You are using k-means clustering to classify heart patients for a hospital. You have chosen Patient Sex, Height, Weight, Age and Income as measures and have used 3 clusters. When you create a pair-wise plot of the clusters, you notice that there is significant overlap between the clusters. What should you do?
Suppose you have been given a relatively high-dimension set of independent variables and you are asked to come up with a model that predicts one of Two possible outcomes like "YES" or "NO", then which of the following technique best fit.
The method based on principal component analysis (PCA) evaluates the features according to
Refer to the Exhibit.
In the Exhibit, the table shows the values for the input Boolean attributes "A", "B", and "C". It also shows the values for the output attribute "class". Which decision tree is valid for the data?
Which method is used to solve for coefficients bO, b1, ... bn in your linear regression model:
You are working as a data science consultant for a gaming company. You have three member team and all other stake holders are from the company itself like project managers and project sponsored, data team etc. During the discussion project managed asked you that when can you tell me that the model you are using is robust enough, after which step you can consider answer for this question?
Which activity is performed in the Operationalize phase of the Data Analytics Lifecycle?
Suppose that we are interested in the factors that influence whether a political candidate wins an election. The outcome (response) variable is binary (0/1); win or lose. The predictor variables of interest are the amount of money spent on the campaign, the amount of time spent campaigning negatively and whether or not the candidate is an incumbent.
Above is an example of
Logistic regression is a model used for prediction of the probability of occurrence of an event. It makes use of several variables that may be......