Your company is building a near real-time streaming pipeline to process JSON telemetry data from small appliances. You need to process messages arriving at a Pub/Sub topic, capitalize letters in the serial number field, and write results to BigQuery. You want to use a managed service and write a minimal amount of code for underlying transformations. What should you do?
You have millions of customer feedback records stored in BigQuery. You want to summarize the data by using the large language model (LLM) Gemini. You need to plan and execute this analysis using the most efficient approach. What should you do?
You work for a financial services company that handles highly sensitive data. Due to regulatory requirements, your company is required to have complete and manual control of data encryption. Which type of keys should you recommend to use for data storage?
You are a Looker analyst. You need to add a new field to your Looker report that generates SQL that will run against your company's database. You do not have the Develop permission. What should you do?
You are migrating data from a legacy on-premises MySQL database to Google Cloud. The database contains various tables with different data types and sizes, including large tables with millions of rows and transactional data. You need to migrate this data while maintaining data integrity, and minimizing downtime and cost. What should you do?
Your team needs to analyze large datasets stored in BigQuery to identify trends in user behavior. The analysis will involve complex statistical calculations, Python packages, and visualizations. You need to recommend a managed collaborative environment to develop and share the analysis. What should you recommend?
You are predicting customer churn for a subscription-based service. You have a 50 PB historical customer dataset in BigQuery that includes demographics, subscription information, and engagement metrics. You want to build a churn prediction model with minimal overhead. You want to follow the Google-recommended approach. What should you do?
Your organization has a BigQuery dataset that contains sensitive employee information such as salaries and performance reviews. The payroll specialist in the HR department needs to have continuous access to aggregated performance data, but they do not need continuous access to other sensitive data. You need to grant the payroll specialist access to the performance data without granting them access to the entire dataset using the simplest and most secure approach. What should you do?
Your retail company wants to predict customer churn using historical purchase data stored in BigQuery. The dataset includes customer demographics, purchase history, and a label indicating whether the customer churned or not. You want to build a machine learning model to identify customers at risk of churning. You need to create and train a logistic regression model for predicting customer churn, using the customer_data table with the churned column as the target label. Which BigQuery ML query should you use?
A)
B)
C)
D)
Your organization uses Dataflow pipelines to process real-time financial transactions. You discover that one of your Dataflow jobs has failed. You need to troubleshoot the issue as quickly as possible. What should you do?
You work for a home insurance company. You are frequently asked to create and save risk reports with charts for specific areas using a publicly available storm event dataset. You want to be able to quickly create and re-run risk reports when new data becomes available. What should you do?
You manage a web application that stores data in a Cloud SQL database. You need to improve the read performance of the application by offloading read traffic from the primary database instance. You want to implement a solution that minimizes effort and cost. What should you do?
You are using your own data to demonstrate the capabilities of BigQuery to your organization’s leadership team. You need to perform a one- time load of the files stored on your local machine into BigQuery using as little effort as possible. What should you do?
Your organization uses a BigQuery table that is partitioned by ingestion time. You need to remove data that is older than one year to reduce your organization’s storage costs. You want to use the most efficient approach while minimizing cost. What should you do?
You created a customer support application that sends several forms of data to Google Cloud. Your application is sending:
1. Audio files from phone interactions with support agents that will be accessed during trainings.
2. CSV files of users’ personally identifiable information (Pll) that will be analyzed with SQL.
3. A large volume of small document files that will power other applications.
You need to select the appropriate tool for each data type given the required use case, while following Google-recommended practices. Which should you choose?
Your organization has several datasets in their data warehouse in BigQuery. Several analyst teams in different departments use the datasets to run queries. Your organization is concerned about the variability of their monthly BigQuery costs. You need to identify a solution that creates a fixed budget for costs associated with the queries run by each department. What should you do?
Your organization’s business analysts require near real-time access to streaming data. However, they are reporting that their dashboard queries are loading slowly. After investigating BigQuery query performance, you discover the slow dashboard queries perform several joins and aggregations.
You need to improve the dashboard loading time and ensure that the dashboard data is as up-to-date as possible. What should you do?
You recently inherited a task for managing Dataflow streaming pipelines in your organization and noticed that proper access had not been provisioned to you. You need to request a Google-provided IAM role so you can restart the pipelines. You need to follow the principle of least privilege. What should you do?